
www.manaraa.com

1

On Failure Detection Algorithms in Overlay Networks

Shelley Q. Zhuang Dennis Geels Ion Stoica Randy H. Katz
{shelleyz, geels, istoica, randy}@eecs.berkeley.edu

Abstract—
One of the key reasons overlay networks are seen as an ex-

cellent platform for large scale distributed systems is their re-
silience in the presence of node failures. This resilience rely
on accurate and timely detection of node failures. Despite the
prevalent use of keep-alive algorithms in overlay networks to
detect node failures, their tradeoffs and the circumstances in
which they might best be suited is not well understood. In
this paper, we study how the design of various keep-alive ap-
proaches affect their performance in node failure detection
time, probability of false positive, control overhead, and packet
loss rate via analysis, simulation, and implementation. We find
that among the class of keep-alive algorithms that share infor-
mation, the maintenance of backpointer state substantially im-
proves detection time and packet loss rate. The improvement
in detection time between baseline and sharing algorithms be-
comes more pronounced as the size of neighbor set increases.
Finally, sharing of information allows a network to tolerate a
higher churn rate than baseline.

I. Introduction
In the last few years, overlay networks have rapidly evolved
and emerged as a promising platform to deploy new appli-
cations and services in the Internet [1], [2], [9], [14], [17],
[19]. One of the reasons overlay networks are seen as an ex-
cellent platform for large scale distributed systems is their re-
silience in the presence of node failures. This resilience has
three aspects: data replication, routing recovery, and static re-
silience [5]. Both routing recovery and static resilience relies
on accurate and timely detection of node failures.

Routing recovery algorithms are used to repopulate the
routing table with live nodes when failures are detected.
Failures are repaired using cached nodes when available,
otherwise more expensive recovery mechanisms are used
which incur additional bandwidth. Thus accurate detection
of node failures is important to minimize unnecessary over-
head. Static resilience measures the extent to which an over-
lay can route around failures even before the recovery algo-
rithm repairs the routing table. However, to exploit this static
resilience, a node needs to know which of its neighbors have
failed. Again accurate and timely detection of node failures
is critical.

Failure detection algorithms can be broadly classified as
either active or passive. In the active approach, a node pe-
riodically sends keep-alive messages. Data packets sent be-
tween nodes can be used to replace explicit keep-alive mes-
sages as an optimization. A passive approach only uses data

packets to convey liveness information. When the routing ta-
ble is symmetrical, a data packet from a node to its neighbor
serves as an I’m alive message and the neighbor learns that
the node is still alive. However, when the routing table is not
symmetrical, explicit acknowledgement (ack) is needed. This
is achieved by piggybacking probes on data packets, and re-
quiring the receiving node to send back an ack [16]. When
data traffic is steady, this approach is sufficient to keep the
routing tables up to date.

There are several situations in which the passive approach
is inadequate. First, when the data traffic is bursty, there are
quiescent periods in which probes cannot be piggybacked
on data packets. Second, in some overlay networks, nodes
maintain a large number of neighbors either due to aggres-
sive caching or by explicit design [6], [7]. In such networks,
there may not be a steady stream of data traffic from a node
to each of its neighbors. Third, many overlay networks do
not employ per overlay hop acks [1], [14], [17], [20], [19]. In
these situations, the active approach is needed.

Thus the active approach is more general, and the passive
approach can be viewed as an optimization of the former
when data traffic is present. Hence we focus on analyzing
the properties of active keep-alive algorithms in this paper.

Two broad classes of keep-alive approaches can be identi-
fied: baseline and sharing. In baseline, each node indepen-
dently makes a decision about the status of its neighbor.
In sharing, nodes share liveness information. Sharing algo-
rithms differ in the type of information exchanged between
nodes, and the amount of keep-alive state maintained.

Despite the prevalent use of these keep-alive algorithms
in overlay networks, their tradeoffs and the circumstances in
which they might best be employed are not well understood.
In this paper we take a step in this direction by comparing
them across detection time, probability of false positive, con-
trol overhead, and packet loss rate.

Minimizing the detection time of a node failure has three
immediate benefits. First, it reduces the vulnerability period
during which packets are forwarded to a failed neighbor and
enables a node to exploit its static resilience by forwarding
packets to an alternate live neighbor. Second, it allows the
network to recover faster from node failures and thus tolerate
higher churn rates. Finally, it reduces routing inconsistencies
when failed nodes are removed in a timely manner.

Clearly there is a tradeoff between minimizing the detec-
tion time and the probability of false positive (making a false

www.manaraa.com

2

detection). The problem of false positive is especially serious
when nodes share information.

Another very important cost to consider is the amount of
control overhead expended. Without this cost, the answer to
minimizing detection time is obvious and means that a node
should probe a neighbor as fast as possible under the con-
straints of round trip time and burstiness of packet loss. Thus,
we examine how fast each keep-alive algorithm can detect
node failures given a control overhead.

Finally, the packet loss rate metric gives a measure of
how reliable routing is when packets are lost due to forward-
ing to a failed neighbor. This metric directly impacts higher
level application metrics such as completion time, network
throughput, lost video frames, etc.

By understanding the tradeoffs between keep-alive algo-
rithms, we can answer questions such as: given the amount
of routing state or churn rate, which keep-alive algorithm is
better suited? For example, in a fully connected network, the
baseline algorithm must use long probe intervals to prevent
nodes from being overwhelmed by probe traffic. This will re-
sult in unacceptably long failure detection times, making the
baseline algorithm unsuitable in such networks.

To illustrate our findings, we evaluate keep-alive algo-
rithms in the context of Chord. Note that the keep-alive algo-
rithms only assume an overlay network where nodes main-
tain neighbors to route packets. The failure detection time,
probability of false positive, and control overhead metrics
depend on the size of neighbor set, and the packet loss rate
metric depends additionally on the path length that a packet
takes in the overlay network. These metrics do not depend
on the specifics of neighbor selection or the routing algo-
rithm. Thus the keep-alive algorithms and analysis of metrics
can be applied to other overlay networks such as RON [1],
CAN [14], Pastry [17], Tapestry [9], etc. We present the de-
sign of keep-alive algorithms and analysis of metrics inde-
pendent of Chord in Sections III and IV.

Our main findings are:

• Detection time vs. sharing: In the absence of network fail-
ures, sharing achieves both lower detection time and con-
trol overhead than baseline, with comparable probability
of false positive. In the presence of network failures, al-
gorithms that share information improves detection time
at the cost of increased control overhead because network
failures cause substantial false positives. If the application-
specific cost of slower failure detection is high, then the
increased control overhead may be warranted.

• Detection time vs. size of neighbor set: The improvement
in detection time between baseline and sharing becomes
more pronounced as the size of neighbor set increases. For
example as the size of neighbor set increases from 22 to 88,
the improvement factor in detection time increases from

N(F) neighbor set of F
B(F) nodes which have F as a neighbor (backpointer set)
d |N(F)|, size of neighbor set
b |B(F)|, size of backpointer set
p one-way network loss rate
prtt round-trip network loss rate
u one-way network unavailability
urtt round-trip network unavailability
c timeout counter threshold for removing a neighbor
k boost counter threshold for removing a neighbor
∆ probe interval
Tto probe timeout value
Tqp probe interval of “quick” probes
Tboost maximum time span of last k boosts
R aggregate probe rate received at a node
pspike probability of receiving k or more boosts

within the time window Tboost due to network loss
pmiss probability that the time span of k boosts

is greater than Tboost when F fails

TABLE I
Notations.

2.7 to 4.5.

• Packet loss rate vs. size of neighbor set: In baseline, a
lower degree network achieves a lower packet loss rate be-
cause packet loss rate is a function of detection time, which
increases linearly as degree increases if the probe band-
width stays constant. In sharing, a fully connected network
like RON minimizes packet loss rate because packet loss
rate is a function of path length, which decreases as the
degree increases.

• Packet loss rate vs. churn rate: For a target packet loss
rate, sharing of information allows a network to operate
at a higher churn rate than baseline. For example, baseline
can meet a target packet loss rate of 96.5% for median node
lifetime of 60 minutes, while sharing can meet the same
target packet loss rate even for median node lifetime of 24
minutes.

The rest of the paper is organized as follows. In Section II,
we describe the network model assumed in this paper. Sec-
tion III discuss the design of keep-alive algorithms. We then
consider the performance metrics in Section IV. Section V
presents experimental results in the context of Chord. We dis-
cuss related work in Section VI, and conclude in Section VII.

II. Network Model

We assume an overlay network with n nodes, where each
node A knows d other nodes in the network. We call this set
the neighbor set of A and we denote it by N(A). Node A
maintains its neighbor set by sending acknowledged are you
alive? probes every ∆ seconds to each of its neighbors.
Node failure We assume nodes fail in a failstop (non-
Byzantine) manner. As shown in a recent study [18], nodes

www.manaraa.com

3

bo
os

t

ac
k (

B(F
))

pr
ob

e

pr
ob

e
ac

k
CA

B F

A

F

ac
k

CA

B

pr
ob

e

F

bo
os

t/p
os

in
fo

CA

B
probe

(d) SNP+BPTR(b) SN+BPTR

probe

pr
ob

e

boost

bo
os

t/p
os

in
fo

(e) SNP(c) SN(a) baseline

probe

pr
ob

e

pr
ob

e
ac

k

boost/posinfo

pr
ob

e

pr
ob

e
ac

k (
B(F

))

boost/posinfo

probe

pr
ob

e
bo

os
t

boost

F

CA

B F

Fig. 1. Keep-alive algorithms.

in an overlay network such as Gnutella fail1 for time peri-
ods on the order of hours, and come back up as new nodes.
This suggests that the fail stop failure model is a reasonable
assumption. To make the analysis tractable, we assume that
nodes join according to a Poisson process and fail according
to an exponential distribution (as in [11]).
Packet loss Packet loss introduced by the underlying net-
work is an important issue that every keep-alive algorithm
must address. We assume that packets can be lost due to two
types of network problems. First, packets can be lost due to
transient problems such as network congestion. In this case,
we assume that packet loss is independent across keep-alive
probes. Traces of packet loss collected in [23] show that the
dependence in packet loss over time is mostly 1 second or
less. Since keep-alive probes are sent with a large tempo-
ral separation, typically O(seconds) in practice, the indepen-
dence assumption is reasonable. When a probe is lost, a node
will send several “quick” probes before concluding that a
neighbor has failed. Second, packets can be lost due to net-
work link failures which cause network paths to be unavail-
able for an extended period of time. When a probe is lost due
to network link failures, we assume that subsequent quick
probes are lost because network link failures typically last
longer than the time it takes to send the quick probes.
Propagation delay With propagation delay, a node has to
wait for some time before it can conclude that a probe is lost.
Specifically, a node considers a probe lost if it does not re-
ceive an ack within Tto seconds.
Probe traffic Another important issue that needs to be ad-
dressed is the presence of nodes with large in-degrees. In
some overlay networks, nodes maintain a large number of
neighbors either due to aggressive caching or by explicit de-
sign [6], [7]. This can result in a network with large in-degree
b, where each node can end up with a large number of nodes
probing it. In such networks, a node with a large in-degree
may be overwhelmed by the amount of probe traffic it re-
ceives, and the probes themselves may cause self-induced
losses. Therefore, a node must bound the aggregate rate of
probes received to some reasonable rate R.

Our goals are to examine how keep-alive algorithms can

1Or equivalently leave the network ungracefully.

Axes Baseline SN+ SN SNP+ SNP
BPTR BPTR

Gossip vs. Probe Probe Probe Probe Probe
probe
Node vs. both both both both both
net failures
Sharing no yes yes yes yes
information
Neg vs. - neg neg both both
pos info
Keep-alive no yes no yes no
state

TABLE II
Design space of keep-alive algorithms.

detect failures as soon as possible when a node can no longer
communicate with a neighbor, and in general how the design
of various keep-alive approaches affect their performance in
detection time, probability of false positive, control overhead,
and packet loss rate.

Table I gives the definition of notations used in this paper.

III. Keep-Alive Algorithms
In this section, we describe the operation of five different
keep-alive algorithms. These algorithms differ in the amount
of information exchanged between nodes, the type of infor-
mation exchanged, and the amount of keep-alive state main-
tained. Our goal here is not to model a specific keep-alive
algorithm, but rather to capture the essential aspects of iden-
tifiably different approaches towards failure detection.

A. Design Space
We begin with a discussion of the design space of keep-alive
algorithms and the axes we explore in this paper.
Gossip vs. probe There are two different approaches to keep-
alive messages. In the gossip approach [17], [22], a node pe-
riodically sends “I’m alive” messages to its neighbors. In the
probe approach [1], [8], [9], [14], [17], [19], a node probes
a neighbor with a “are you alive?” message, and the neigh-
bor replies with a “yes I’m alive” message. When the routing
table is symmetrical, a “I’m alive” message from a node to
its neighbor allows the neighbor to learn that the node is still
alive. However, when the routing table is not symmetrical,
explicit ack from the neighbor is needed. Thus, the probe ap-

www.manaraa.com

4

proach is more general than the gossip approach in that the
routing table does not need to be symmetrical. In addition,
the gossip approach does not detect asymmetries in network
connectivity. In particular, if node A can talk to node B while
B cannot talk to A, then B will not detect such pathologies
from the “I’m alive” messages and continue to send packets
to A. For these reasons, we only explore the probe approach
to keep-alive algorithms in this paper.
Node vs. network failures There are two reasons for which a
node cannot communicate with a neighbor: (1) the neighbor
is down, (2) there is a network failure to or from the neighbor.
It is important to detect both types of communication failures,
and a node should stop forwarding packets to a neighbor with
which it cannot communicate with. We define a false posi-
tive as the event in which a neighbor is alive and paths to and
from the neighbor are up but loss of keep-alive probes in-
dicates otherwise. We evaluate keep-alive algorithms under
both node and network failures.
Sharing vs. not sharing information In order to detect fail-
ures, a node has to probe on its own or share information with
other nodes. It is straightforward to see that sharing of live-
ness information reduces the failure detection time because
ideally the first node that detects a failure can announce this
to everyone else. However, the problem of false positive is
compounded when nodes share information about the loss of
probes. We explore these issues by looking at keep-alive al-
gorithms in which nodes independently make decisions, and
ones which share information.
Negative vs. positive information Nodes can share either
negative (node is down) or positive (node is up) information.
Sharing of negative information reduces the failure detection
time, while sharing of positive information reduces the prob-
ability of false positive. There are several works that present
failure detectors based on the sharing of positive information
only [8], [22]. These have a lower probability of false posi-
tive than ones that share negative information. However, the
detection time is the same as in baseline or worse by a factor
of O(log n) as analyzed in [8]. Thus we do not consider al-
gorithms that only share positive information. Instead we ex-
plore algorithms which share negative information, and look
at how effective the sharing of positive on top of negative
information reduces the probability of false positive.
Keep-alive state vs. no state Nodes can maintain additional
keep-alive state to make the sharing of information most ef-
fective. We examine the efficacy of algorithms which do not
maintain additional state, and the improvement in detection
time for ones which do.

To summarize, we evaluate probe keep-alive algorithms
that differ in the amount and type of information shared and
the amount of keep-alive state maintained under both node
and network failures. Table II summarizes how the keep-alive

algorithms fit in the design space. Refer to [24] for the pseu-
docode.

B. Baseline
In baseline, a node independently makes a decision about the
status of its neighbor. We note that this is the basic keep-
alive algorithm employed by virtually all overlay networks
to maintain liveness information [1], [9], [14], [17], [19].

Figure 1(a) shows the messages exchanged between a node
A and its neighbor F . Node A sends a probe to F every ∆
seconds, and waits for an ack. The probe interval ∆ should be
chosen such that the aggregate probe rate received at a node
is approximately R. If a probe is not acknowledged within
Tto seconds, it is considered lost. When a probe loss occurs,
the next probe packet is sent Tqp (> Tto) seconds after the
previous probe, up to a maximum of c−1 quick probes. Note
that because we limit the rate of probes received at a node,
sending c−1 quick probes at Tqp seconds apart should not
exacerbate network congestion if the first probe is lost due
to network congestion. As an example, if R is one probe
per second, then probe losses due to network congestion will
only add at most c−1 additional probes per second received
at a node. A node removes a neighbor from its routing table
after c consecutive timeouts. The advantage of the baseline
algorithm is that it is intuitive and easy to implement.

C. Sharing Negative Information with Backpointer
State (SN+BPTR)

To reduce the detection time in baseline, a node has to probe a
neighbor more aggressively. However, this comes at the cost
of increased control overhead. An alternative is to probe at
the same rate, but share negative (node is down) informa-
tion among nodes who are interested in a particular neigh-
bor. Thus we now consider the SN+BPTR algorithm, which
shares negative information to reduce detection time. In ad-
dition, each node also maintains keep-alive state such that
information regarding a neighbor reaches the set of nodes in-
terested in the liveliness of that neighbor. See [24] for details
on how to maintain this state in a generic overlay network.

Each node sends a probe to each of its neighbors every ∆
seconds, and waits for an ack as in baseline. Let B(F) be
the set of nodes which have a node F in their neighbor sets.
We call this set the backpointers of F , which is precisely the
set of nodes interested in the liveness of F . When a node in
B(F) experiences c consecutive timeouts to F , it sends this
negative information (boost) to all other nodes in B(F). Fig-
ure 1(b) shows a network of four nodes, where B(F) consists
of A, B, and C . When A experiences c consecutive timeouts
to F , it sends boosts to other backpointers (B and C).

Clearly, sharing of negative information reduces detection
time, and the challenge here is to minimize the probability of
false positive. As the in-degree b of a node increases, ∆ has to

www.manaraa.com

5

increase proportionally to maintain the aggregate probe rate
R received at the node constant. As a result, the probability
of a node receiving k or more boosts from other backpointers
within ∆ due to network losses can be significant.

To see this, consider the approximation of the number of
boosts received within ∆ by a binomial distribution with b tri-
als. Then the probability of successfully receiving k or more
boosts in b trials increases rapidly as b increases. To decou-
ple the probability of false positive from the in-degree of a
node, we impose a constraint such that the time span of the
last k boosts must be less than a time window, Tboost. This
effectively reduces the probability of false positive from re-
ceiving k or more boosts in a probe interval ∆ to receiving k
or more boosts in a smaller time window Tboost. Section IV-
B describes how to configure Tboost such that a node will re-
ceive k or more boosts with low probability when a neighbor
is up, but with high probability when a neighbor indeed fails.

In SN+BPTR, a node maintains two separate counters for
each of its neighbors. One for the number of consecutive
probe timeouts, and the other for the number of consecutive
boosts received from other nodes. It removes a neighbor from
its routing table if it experiences c consecutive timeouts, or
receives k consecutive boosts within the time window Tboost.

D. Sharing Negative Information (SN)
In this algorithm, we examine the effectiveness of sharing
without maintaining backpointer state.

Each node sends a probe to each of its neighbors every ∆
seconds, and waits for an ack as in baseline. When a node A
experiences c consecutive timeouts to a neighbor F , it sends
a boost to its other neighbors. Figure 1(c) shows a network
of four nodes, where node A has neighbors B, C , and F .
When node A experiences c consecutive timeouts to F , it
sends boosts to neighbors B and C . A node maintains two
separate counters for each of its neighbors as in SN+BPTR.
It removes a neighbor from its routing table if it experiences
c consecutive timeouts, or receives k consecutive boosts.

The advantage of SN is that it does not maintain additional
state, and the size of an ack is smaller than that of SN+BPTR.
However, as we show in Section IV, the effectiveness of this
algorithm on reducing detection time depends on the proba-
bility that two neighbors share a third neighbor.

E. Sharing Negative and Positive Information with
Backpointer State (SNP+BPTR)

SNP+BPTR is similar to the SN+BPTR algorithm, with the
addition of sharing of positive (node is up) information to
reduce the probability of false positive.

Figure 1(d) shows a network of four nodes, where the
backpointer set of node F consists of nodes A, B, and C .
When A receives an ack from F and its boost counter for
F is nonzero, it sends this positive information (posinfo) to

Detection Probability of Control
time false positive overhead

Baseline ∆

2
pk

rtt 2d

SN+BPTR ∆

b+1
k pk

rtt + (∝ pspike(d)) 2d+boost
SN ∆

s+1
k pk

rtt + (∝ pspike(c)) 2d+boost
SNP+BPTR ∆

b+1
k pk

rtt + (∝ ppos

spike(b)) 2d+boost+pos
SNP ∆

s+1
k pk

rtt + (∝ ppos

spike(c)) 2d+boost+pos

TABLE III
Performance metrics (common Tqp(c − 1) + Tto term in detection

time is omitted for space reasons).

other backpointers (B and C). When B receives the posinfo,
it resets the boost counter for F to zero. Note that when F is
down, posinfo is never propagated because no node will re-
ceive ack from F . When F is up but the path between it and
a node is down, the node will still remove F from its routing
table despite posinfo because posinfo only resets the boost
counter and not the timeout counter.

The advantage of SNP+BPTR is that it reduces the num-
ber of false positives caused by boosts in SN+BPTR without
slowing down failure detection since posinfo is not propa-
gated when a node is down. However, this comes at a cost of
increased control overhead due to posinfo messages.

F. Sharing Negative and Positive Information (SNP)
SNP is similar to the SN algorithm, with the addition of pos-
itive information to reduce the probability of false positive.

Figure 1(e) shows a network of four nodes, where node A
has neighbors B, C , and F . When node A receives a probe
ack from a neighbor F and its boost counter for F is nonzero,
it sends this posinfo to its other neighbors (nodes B and C).
When node B receives the posinfo and has F as a neighbor,
it resets the boost counter for F to zero.

SNP reduces the probability of false positive in SN with-
out slowing down failure detection but at a cost of increased
control overhead from the propagation of posinfo messages.

IV. Performance Metrics
We now discuss performance metrics and develop simple an-
alytic models to quantitatively compare the performance of
keep-alive algorithms. These results are summarized in Ta-
ble III.

A. Detection Time
Baseline Let X1 be the time when a neighbor fails, X2 be the
time when a node sends a probe to that neighbor after it has
failed, and U be X2−X1. Then U has a Uniform distribution
on [0,∆] with an expected value of ∆/2. The average time it
takes a node to detect that a neighbor has failed is then

δ =
∆

2
+ τ (1)

where τ = Tqp (c − 1) + Tto. The variance of detection
time is ∆2/12.

www.manaraa.com

6

SN+BPTR Consider a node F with b backpointers. Let Ui

be the time difference between X1 and X2 for the ith back-
pointer of F . According to a well known order statistic theo-
rem [4], the kth smallest random variable of b Uniform ran-
dom variables on [0,∆] follows the ∆ βk distribution, where
βk is the Beta distribution with parameters k and b − k + 1.
The expected value of βk is k/(b + 1). Thus it will take on
average k ∆/(b+1) seconds for the first k out of b backpoint-
ers to send a probe to F after it fails. With that, the average
time it takes a node to detect that a neighbor has failed is

δ =
∆

b + 1
k + τ (2)

The variance of detection time in SN+BPTR is
∆2k(b−k+1)
(b+1)2(b+2) , which is smaller than in baseline.
SN Consider a node F with b backpointers, and a backpointer
A. Let B(F ;A) = B(F) ∩ B(A), which is a subset of the b
backpointers of F that has node A as a neighbor. Let s =
|B(F ;A)|+1. Let Ui be the time difference between X1 and
X2 for the ith backpointer in B(F ;A)∪A. It will take on av-
erage k ∆/(s+1) seconds for the first k out of s backpointers
to send a probe to F after it fails. With that, the average time
it takes node A to detect that its neighbor F has failed is

δ =
∆

s + 1
k + τ (3)

The variance of detection time in SN is ∆2k(s−k+1)
(s+1)2(s+2) . The

value of s depends on how the overlay network is connected.
In Chord with log2 n neighbors, the clustering coefficient is

1
log

2
n

[12], which means that on average s = 2. We will see
in Section V that the degree of sharing is greater when Chord
maintains a successor list in addition to the log2 n neighbors.
SNP+BPTR The average failure detection time here is the
same as that for SN+BPTR as derived in Equation 2.
SNP The average failure detection time here is the same as
that for SN as derived in Equation 3.

B. Probability of False Positive
We first focus on transient network problems because it is
conceptually simple; we will generalize the analysis to a net-
work with link failures in Section IV-B.2.

B.1 Transient Network Losses

We assume that packet loss is independent across keep-alive
probes. Traces collected in [23] show that packet losses are
mostly correlated across periods of 1 second or less. Since
keep-alive probes are typically separated by O(seconds) in
practice, we feel this assumption is reasonable.
Baseline Each node experiences c consecutive timeouts on its
own before concluding that a neighbor has failed. The prob-
ability of false positive is simply

pfp = pc
rtt (4)

SN+BPTR In addition to false positives caused by c consec-
utive timeouts that occur in baseline, false positives might

0 5 10 15
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

T_boost (second)

P
ro

ba
bi

lit
y

p
miss

p
spike

Fig. 2. pmiss and pspike as a function of the time window Tboost.

also occur under SN+BPTR when a node receives k or more
boosts within the time window Tboost.

Choosing a smaller Tboost lowers the probability that a
node receives k or more boosts when a neighbor is up and
incurs a false positive. On the other hand, Tboost should be
large enough such that a node has a chance to receive k boosts
when a neighbor actually fails. We now look at this tradeoff.

To make the analysis tractable, consider the case where
lossy links on network paths from nodes in B(F) to a node
F are disjoint. Note that this constitutes a best case scenario
for SN+BPTR.

Let pspike be the probability of receiving k or more boosts
within Tboost at a node in B(F), as derived in [24]. In the
event that k or more nodes in B(F) experience c consecutive
timeouts to F within Tboost, then every other node in B(F)
will get k or more boosts, and incur a false positive. Figure 2
shows that pspike increases slowly with Tboost.

If we only consider the probability of false positive, then
Tboost should be as small as possible. However, as mentioned
earlier, Tboost must be large enough such that a node in B(F)
will receive k boosts within Tboost with high probability when
F indeed fails. Let pmiss be the probability that the time span
of k boosts is greater than Tboost when F indeed fails, as
derived in [24]. Figure 2 shows that as Tboost increases, pmiss

decreases rapidly. Thus, given ∆, b, and R, we can find the
desired tradeoff point between probability of false positive
and detection time.
SN The analysis for SN+BPTR holds here except that |B(F)|
effectively reduces from b to s for a backpointer A with s =
|B(F ;A)| + 1. The decrease in probability of false positive
compared to SN+BPTR depends on the value of s.
SNP+BPTR For a false positive to occur, a node in B(F)
must receive k or more boosts without any intervening pos-
info messages. Thus the propagation of positive information
in SNP+BPTR reduces the probability of receiving k or more
boosts within Tboost seconds from pspike to ppos

spike, as derived
in [24]. For example, if R = 1 probe/second, c = 3, k = 3, p
= 0.05, and Tboost = 10 seconds, then pspike = 8.15 × 10−8,

www.manaraa.com

7

Packet IP/UDP Type finger IP+ Total
type hdrs ID port
Probe 28 1 32 61
Ack 28 1 32 61
Ack (BPTR) 28 1 32 6 b 61+
Boost 28 1 32 61
Posinfo 28 1 32 61

TABLE IV
Sizes of various packet types in bytes.

and ppos
spike = 5.46 × 10−9, which is about 15 times smaller.

SNP The derivation of ppos
spike for SNP+BPTR holds here ex-

cept that the size of the backpointer set B(F) effectively re-
duces from b to s for a backpointer A with s = |B(F ;A)|+1.

B.2 Network Link Failures

We now consider a more realistic network where packets can
be lost due to link failures in addition to transient problems.
Let u be the average unavailability of a network path due to
link failures, and urtt be the round-trip unavailability, where
urtt = 1 − (1 − u)2.

The probability of false positive for the baseline algorithm
remains the same as in Equation 4. When there are link fail-
ures on a network path between a node and its neighbor, the
node will remove the neighbor after c consecutive timeouts.
This is considered a true positive because a node should re-
move a neighbor with whom it cannot communicate with.

The probability of false positive for sharing algorithms in-
creases when link failures are present. Consider the set of
network paths between nodes sharing information about a
node F and the node F . If the network paths completely over-
lap, then boosts due to link failures result in true positives at
nodes receiving the boosts. However, if the network paths are
disjoint, then boost messages due to link failures cause false
positives at nodes receiving the boosts. Thus, we analyze the
case in which network paths are disjoint because it consti-
tutes a worst case scenario for sharing and thus provides an
upper bound on the probability of false positive.

The derivation of pspike and ppos
spike still holds in the pres-

ence of link failures except for the following. When a probe is
lost due to link failures, subsequent quick probes are lost with
high probability because link failures typically last longer
than the time it takes to send the quick probes. Thus the prob-
ability of sending a boost when a neighbor is up increases
from pk

rtt to pk
rtt + urtt, and the one way network loss rate

increases from p to p + u. See [24] for more details.

C. Control Overhead
The sizes of various keep-alive message types in bytes are
summarized in Table IV.
Baseline The control overhead in baseline consists of probes
and probe acks. A node probes its neighbor every ∆ seconds,
thus the average number of keep-alive messages sent by a

node with d neighbors during ∆ seconds is 2d.
SN+BPTR The control overhead for SN+BPTR also in-
cludes boosts sent to backpointers when a node encounters c
consecutive timeouts. If a neighbor F is alive, then the num-
ber of boosts sent by a node during ∆ seconds regarding F
is approximately (pk

rtt + urtt) b, where b = |B(F)|. If F is
down, then the boosts save the receivers of these messages
from sending probes themselves to detect the failure of F .

Ideally, the saving of probes is counter-balanced by the
boosts. In practice, some of the boosts may be extraneous
as in the following cases. A neighbor F may fail shortly af-
ter node A starts probing it, and thus A is only in the back-
pointer lists of a few nodes that probed F after A and before
F failed. In this case, these few nodes may quickly detect
the failure of F from boosts of other backpointers, and thus
do not send boosts to A. Another case is when the size of
the backpointer set maintained by F is smaller than the ac-
tual number of backpointers, so some backpointers may not
know about A. Finally, A may not receive some of the boosts
due to network loss. In these cases, A will eventually remove
F by its own probe losses, but the resulting boosts sent by A
may be extraneous to other backpointers.

Thus the number of keep-alive messages sent by a node
with d neighbors during ∆ is approximately 2d + d (pk

rtt +
urtt) b plus the extraneous boosts sent when a neighbor is
down. Finally, the probe acks are larger in SN+BPTR than in
baseline due to the inclusion of the list of backpointers.
SN The control overhead for SN consists of probes and probe
acks as in baseline, and also boosts sent to other neighbors
when a node encounters c consecutive timeouts. If a neighbor
F is alive, then the number of boosts sent by a node A during
∆ regarding F is approximately (pk

rtt +urtt)d, where d is the
size of the neighbor set of A. If F is down, then the saving
of probes from boosts is less than in SN+BPTR because of
the following. First, the boosts are sent to nodes who may not
have F as a neighbor. Second, the boosts may not reach all
nodes in B(F), which means the nodes that are not reached
will remove F by their own probe losses, and thereby gener-
ate even more boosts that are only partially useful.

Thus the number of keep-alive messages sent by a node
with d neighbors during ∆ seconds is approximately 2d +
d2(pk

rtt +urtt) plus the extraneous boosts sent when a neigh-
bor is down. Note that the size of probe acks in SN is the
same as that in baseline.
SNP+BPTR In addition to the control overhead in
SN+BPTR, SNP+BPTR also sends posinfo messages to
backpointers when a node receives a probe ack from a neigh-
bor F with a nonzero boost counter. Note that posinfo is
never sent when neighbor F is down. Thus the number of
posinfo messages sent by a node with d neighbors during ∆
seconds is approximately d (pk

rtt + urtt) (1 − prtt − urtt) b.

www.manaraa.com

8

SNP In addition to the control overhead in SN, SNP also
sends posinfo messages to other neighbors when a node re-
ceives an ack from a neighbor with a nonzero boost counter.
The number of posinfo messages sent by a node with d neigh-
bors during ∆ seconds is approximately d2 (pk

rtt +urtt) (1−
prtt − urtt).

D. Packet Loss Rate
We assume nodes fail independently with rate λf . The up-
time of each node is exponentially distributed, and its average
value, 1/λf , is much larger than δ. This means the probability
that a node has failed at time t + δ, given the node was up at
time t, is 1 − e−δ λf due to the memoryless property of the
exponential distribution. This is approximately equal to δ λf

for δ λf � 1. Thus, the probability that a node forwards a
packet to a neighbor that has already failed is δ λf . Assuming
that lδλf � 1, the packet loss rate on a path of length l is

pl = 1 − (1 − δ λf)l ≈ lδ λf (5)

V. Evaluation
We now present simulation and experimental results evalu-
ating the benefit and cost of the keep-alive algorithms in the
context of Chord [19]. Note that the keep-alive algorithms
can be applied to any network, and Chord is simply an exam-
ple on which we test the algorithms.

Chord is a distributed protocol that provides a hash func-
tion mapping keys to nodes responsible for them. It assumes
a circular identifier space of integers [0, 2m). Chord finds the
node responsible for a key after O(log n) hops.

The routing state maintained by each node A consists of
two types of neighbors: successors and fingers. Successors
are the first few nodes that succeed A on the identifier circle.
The ith finger is the first node that succeeds A by at least
2i−1, where 1 ≤ i ≤ m. Note that the keep-alive algorithms
do not differentiate on the types of neighbors.

In order to ensure that packets route correctly as the set
of participating nodes changes, Chord must ensure that each
node’s routing state is up to date. It does this using a stabilize
protocol that each node periodically runs every Ts seconds.
In each stabilization round, a node updates its immediate suc-
cessor and another node in its routing state.

A. Modelnet Experiments
We run our experiments on Modelnet [21], an emulation
environment that allows us to run unmodified code in a
configurable Internet-like environment with reproducible re-
sults. We use Modelnet to impose wide-area delay and band-
width restrictions, and the Inet topology generator2 to create
a 10,000-node wide-area AS-level network with 500 client

2http://topology.eecs.umich.edu/inet/

nodes connected to random stubs by 1 Mbps links. To in-
crease the scale of experiments without overburdening the ca-
pacity of Modelnet by running more client nodes, each client
node runs 4 Chord instances, for a total of 2000.

A.1 Methodology

In each experiment, we start a Chord network with 2000
nodes by joining a new node to a random bootstrap node once
a second. Then we repeatedly kill and replace a random node,
timed by a Poisson process.

Key lookups (packets) are initiated from random sources
to random keys, timed by a Poisson process at a rate of 200
per second. Packets are routed recursively; each intermediate
node forwards a packet to the next until it reaches the node
responsible for the key.

We model two different kinds of network loss. In the first
loss model (LM1), packet losses are due to transient net-
work problems, and each packet traversing an overlay link is
dropped independently with the fixed probability p = 0.4%.
In the second loss model (LM2), we also inject network link
failures according to the model of network path unavailabil-
ity developed in [3]. In this model, we pick a failure duration
from the CDF R(t) = 1 − 19t−0.85 for each path, and then
compute the mean time to failure (MTTF) so that the average
unavailability of the path is 1.25%. Path failures are timed by
a Poisson process with mean MTTF.

A.2 LM1 Results: Metrics vs. Size of Neighbor Set

Here we hold the total probe rate constant and study how
the performance metrics vary as the size of neighbor set d
increases. In baseline, SN, and SNP, each node sends one ev-
ery T seconds. Hence ∆ = dT , and ∆ is proportional to d. In
SN+BPTR and SNP+BPTR, each node receives, on average,
one probe every T seconds from its b backpointers. Hence
∆ = bT , and ∆ is proportional to b. For all algorithms, the
aggregate probe rate is approximately n/T .

In Chord, each node maintains log2 n fingers and log2 n
successors for a total of 2 log2 n neighbors by default. We
increase the size of neighbor set from 2 log2 n to 4 log2 n to
8 log2 n, which correspond roughly to d = 22, 44, and 88 for
a network of 2000 nodes. The actual number of neighbors is
smaller because the successors and fingers partially overlap.

For this set of experiments, we hold the median node life-
time at 30 minutes, and set T=1 second.
Detection time Figure 3 shows the histogram of node fail-
ure detection time in 1-second bins for d = 44. As expected,
the results for baseline is uniformly distributed on the inter-
val [0,∆] + τ . In SN+BPTR and SNP+BPTR, the worst case
detection time is ∆ + τ because there are cases in which a
node will not receive boosts and must rely on its own probe
timeouts to detect a neighbor failure. For instance, a node A
may start probing a neighbor F shortly before or even after F

www.manaraa.com

9

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40

F
ra

ct
io

n
of

 T
ot

al
 F

ai
lu

re
s

D
et

ec
te

d

Mean Detection Time (seconds)

Detection Time Histogram, 2000 node network

Baseline
SN+BPTR

SN
SNP+BPTR

SNP

Fig. 3. Histogram of node failure detection time for d = 44 and
median lifetime of 30 minutes

 0

 5

 10

 15

 20

 25

 30

 35

2 log(n) 4 log(n) 8 log(n)

M
ea

n
D

et
ec

tio
n

T
im

e
(s

ec
on

ds
)

Size of Neighbor Set

Detection Time vs. Size of Neighbor Set, 2000 node network

Baseline
Baseline (analysis)

SN+BPTR
SN+BPTR (analysis)

SN
SNP+BPTR

SNP

Fig. 4. Node failure detection time vs. size of neighbor set for
median lifetime of 30 minutes

fails, not leaving time for F ’s other backpointers to learn of
A and send boosts. Also, boosts may be dropped by the net-
work, or F may limit the size of the backpointer set it main-
tains. Figure 3 shows that these cases happen infrequently,
and in fact the mode of detection time in boosting is around
3 seconds. In SN and SNP, the reduction in detection time
is less significant because the efficacy of sharing depends on
the probability that two neighbors share a third neighbor.

Figure 4 plots the mean detection time versus the size of
neighbor set d. The solid lines correspond to experimental
results, and the dotted lines correspond to the values pre-
dicted with the equations. The results show that the analyt-
ical equations are quite accurate. In baseline (recall from
Equation 1), δ = ∆

2 + τ . By substituting ∆ = dT , we get
δ = Td

2 + τ , which increases linearly with d. Figure 4 shows
approximately the same detection times as well as the linear-
ity in d (note that the x-axis is logarithmic). In SN+BPTR
and SNP+BPTR (recall from Equation 2), δ = ∆

b+1 k + τ .

By substituting ∆ = bT , we get δ = bT
b+1 k + τ , which

remains approximately constant as d (and thus b) increases.
For k = 3, δ is approximately 3 + τ seconds. The improve-
ment in δ between baseline and SN+BPTR becomes more
pronounced as d increases. In SN and SNP, the detection time
is less than in baseline, but the reduction is not as significant
as in SN+BPTR and SNP+BPTR because value of s in Chord

 600

 700

 800

 900

 1000

 1100

 1200

8 log(n)4 log(n)2 log(n)

B
an

dw
id

th
 C

on
su

m
ed

 (
B

yt
es

/s
ec

on
d/

no
de

)

Size of Neighbor Set

Bandwidth vs. Size of Neighbor Set, 2000 node network

Baseline
SN+BPTR

SN
SNP+BPTR

SNP

Fig. 5. Control overhead vs. size of neighbor set for median life-
time of 30 minutes.

(recall from Equation 3) is smaller than b.
Probability of false positive The probability of false positive
is calculated as the ratio of false positives per minute to the
number of probes per minute. The probability of false posi-
tive is approximately the same for all algorithms, at around
1 × 10−6 (the graph is omitted in the interest of space). Ac-
cording to Equation 4, the probability of false positive is
5 × 10−7, which is close to the experimental numbers. Thus,
when packet losses are due to transient network problems,
sharing negative information reduces detection time without
increasing the probability of false positive by much.
Control overhead Network traffic consists of keep-alive
messages, stabilization, and lookup traffic. Figure 5 plots the
bandwidth consumed per node. In baseline, the bandwidth
stays approximately constant as d increases because ∆ in-
creases linearly with d. At d = 88, the bandwidth con-
sumed is approximately 655 bytes/second. SN+BPTR con-
sumes more bandwidth because of boosts due to false posi-
tives and inclusion of backpointers in acks 3. At d = 88, the
bandwidth consumed is approximately 1190 bytes/second,
which is 1.8 times higher than in baseline. However, the de-
tection time is 4.5 times lower than in baseline. In order to
achieve the same deduction in detection time in baseline, a
node has to probe 4.5 times faster (see Equation 1), or con-
sume 4.5 times more bandwidth. This means that SN+BPTR
can achieve both lower detection time and control overhead
than baseline, with comparable probability of false positive
in the absence of network link failures. In SN, the bandwidth
consumed is slightly higher than in baseline due to boosts.
The control overhead in SNP+BPTR and SNP are approxi-
mately the same as in SN+BPTR and SN because there are
very few false positives that trigger the posinfo messages.
Packet loss rate Packets can be lost due to the underlying
network or forwarding to failed neighbors. Each keep-alive
algorithm experiences the same network loss rate, thus any

3The entire backpointer list is included in these experiments,
sending subsets of backpointers as described in [24] will lower the
bandwidth.

www.manaraa.com

10

 90

 92

 94

 96

 98

 100

2 log(n) 4 log(n) 8 log(n)

P
er

ce
nt

ag
e

of
 P

ac
ke

ts
 C

om
pl

et
ed

 a
nd

 C
on

si
st

en
t

Size of Neighbor Set

Correctness vs. Size of Neighbor Set, 2000 node network

Baseline
Baseline (analysis)

SN+BPTR
SN+BPTR (analysis)

SN
SNP+BPTR

SNP

Fig. 6. Percent of packets completed and consistent vs. size of
neighbor set for median lifetime of 30 minutes.

improvement in the packet loss rate is attributed to faster fail-
ure detection reducing the packets forwarded to failed neigh-
bors. Figure 6 plots the percent of packets completed and
consistent vs. the size of neighbor set d. To measure inconsis-
tency, each packet is simultaneously routed by ten different
nodes in the network and the results are compared. If there
is a majority among the results, any result not in the ma-
jority is considered an inconsistency; if there is no majority,
all results are considered inconsistent [16]. In baseline (re-
call from Equations 1 and 5), δ varies linearly with d, and pl

varies linearly with δ. However, pl also varies linearly with
the hop count l, which decreases as d increases. Thus correct-
ness decreases (although not quite linearly) as d increases,
which means a lower degree network minimizes packet loss
rate. In SN+BPTR and SNP+BPTR, δ remains approxi-
mately constant as d increases. Thus the percent correct in-
creases as d increases because the hop count l decreases,
which means a fully connected network like RON minimizes
packet loss rate. The behaviors of SN and SNP are some-
where in between baseline and SN+BPTR and SNP+BPTR.
As d increases, correctness increases as in SN+BPTR and
SNP+BPTR. However, as d increases furthermore, the linear
increase in δ as in baseline starts to dominate, and percent of
packets completed and consistent starts to decrease.

A.3 LM1 Results: Metrics vs. Churn Rate

Overlay networks are intended to scale to at least hundreds
of thousands of nodes, where nodes are joining and leaving,
putting the network into a continuous state of “churn”. Here
we observe how well the network can tolerate churn under
each keep-alive algorithm. We use median lifetimes of 60, 30,
15, and 7.5 minutes, which correspond to churn rates of 0.39,
0.77, 1.54, and 3.08 leaves per second. The size of neighbor
set (d) is 44 in these experiments.
Detection time Figure 7 shows that the detection time in
baseline, SN, and SNP remain approximately constant as
churn increases. This is expected from Equations 1 and 3,
which show that δ varies with ∆ and s, but does not depend

 0

 5

 10

 15

 20

 25

 60 30 15

M
ea

n
D

et
ec

tio
n

T
im

e
(s

ec
on

ds
)

Median Node Lifetime (minutes)

Detection Time vs. Churn, 2000 node network

Baseline
Baseline (analysis)

SN+BPTR
SN+BPTR (analysis)

SN
SNP+BPTR

SNP

Fig. 7. Node failure detection time vs. churn rate for d = 44.

 650

 700

 750

 800

 850

 900

 950

 1000

 1050

 7.5 15 30 60

B
an

dw
id

th
 C

on
su

m
ed

 (
B

yt
es

/s
ec

on
d/

no
de

)

Median Node Lifetime (minutes)

Bandwidth vs. Churn, 2000 node network

Baseline
SN+BPTR

SN
SNP+BPTR

SNP

Fig. 8. Control overhead vs. churn rate for d = 44.

on the churn rate. However, the detection time in SN+BPTR
and SNP+BPTR increases slowly as churn increases, which
is not expected from Equation 2. This is because when nodes
join and leave quickly, the backpointer list maintained at a
node F may not propagate in time to its set of backpointers
B(F), and the local backpointer lists at B(F) may become
stale. However, for median lifetimes of 60 to 15 minutes, de-
tection time in SN+BPTR and SNP+BPTR is still about 3-4
times lower than in baseline for d = 44, and about 2 times
lower in SN and SNP.
Probability of false positive As before, the probability of
false positive remains approximately constant at 1× 10−6 as
churn increases (the graph is omitted in the interest of space).
This is expected from Equations 4, pspike, and ppos

spike, which
show that pfp varies with the network loss rate, but does not
depend on the churn rate.
Control overhead Figure 8 plots the bandwidth consumed at
a node as churn rate increases. In sharing algorithms (recall
from Section IV-C), some boosts may be extraneous when a
node fails. As churn increases, bandwidth increases slightly
for SN+BPTR, SNP+BPTR, SN, and SNP as there are more
node failures and thereby more extraneous boosts.
Packet loss rate Recall from Equation 5, pl increases linearly
with the node failure rate λf . Figure 9 shows that the percent
of packets completed and consistent decreases approximately
linearly as the churn rate increases. Thus sharing allows the
network to support a higher churn rate than baseline.

www.manaraa.com

11

 90

 91

 92

 93

 94

 95

 96

 97

 98

 60 30 15

P
er

ce
nt

ag
e

of
 P

ac
ke

ts
 C

om
pl

et
ed

 a
nd

 C
on

si
st

en
t

Median Node Lifetime (minutes)

Correctness vs. Churn, 2000 node network

Baseline
Baseline (analysis)

SN+BPTR
SN+BPTR (analysis)

SN
SNP+BPTR

SNP

Fig. 9. Percent of packets completed and consistent vs. churn rate
for d = 44.

A.4 LM2 Results

So far, we have considered the LM1 loss model with packet
loss due to transient network problems. In this section, we
evaluate the keep-alive algorithms under the LM2 loss model
with the addition of network link failures. At the moment our
testing code is unable to produce network link failures on
Modelnet, but we are working to extend it in the near future.
Instead, we simulate a network with n = 1000 nodes, mean
lifetime = 22 minutes, d = 128, and p = 0.05.

Results for detection time is similar to that under the LM1

loss model, and we omit it in the interest of space. Fig-
ure 10(a) plots the probability of false positive versus time.
pfp in baseline is approximately 1 × 10−3 as analyzed in
Section IV-B.2. pfp in SN+BPTR and SN is higher because
boosts due to link failures cause false positives at other nodes
receiving the boosts. We see that sharing of positive informa-
tion reduces pfp in both SN+BPTR and SN.

Figure 10(b) plots the control overhead due to keep-alive
messages versus time. The control overhead in SN+BPTR is
higher than in baseline because of the inclusion of backpoint-
ers in acks and boosts sent due to false positives. SNP+BPTR
and SNP have a higher control overhead than SN+BPTR and
SN because of the sharing of positive information.

Figure 10(c) plots the packet loss rate versus time. The av-
erage loss rates for baseline, SN+BPTR, and SN are 10.5%,
7.4%, and 4%, which show that loss rate under SN+BPTR is
2-3 times lower than in baseline at a cost of increased con-
trol overhead. If the application-specific cost of packet loss is
high, then the increased control overhead may be warranted.

VI. Related Work
In traditional routing protocols such as the inter-domain rout-
ing protocol BGP [15], failure detection is performed at the
link layer and the BGP layer. At the link layer, failure detec-
tion is done at the hardware level and takes less than 100
milliseconds [10]. At the BGP layer, a router periodically
sends KEEPALIVE packets to its neighbors, similar to the
baseline algorithm. When a failure such as a fiber cut, inter-

face problem, or router crash occurs, a neighbor router may
be directly notified by link layer hardware, or may detect the
failure via the loss of consecutive KEEPALIVE packets. Ex-
perimental results show that failure detection is done mostly
at the hardware level [10]. Thus sharing of liveliness infor-
mation is not necessary here. In addition, it is relatively rare
that a whole router goes down, but more likely that an inter-
face problem or fiber cut has occurred. In these cases, neigh-
bors of the router should not exchange liveliness information
because the router may still be up for other BGP sessions.
Similarly, failure detection in the intra-domain routing pro-
tocol IS-IS is performed at the link layer and at the routing
later via IS-IS Hello packets.

The most closely related work to ours is [13], which de-
rives an analytical model relating packet loss probability to
probing interval and node failure rate for the baseline keep-
alive algorithm. A self-tuning mechanism is proposed to in-
crease the probing rate of the baseline keep-alive algorithm
in response to an increase in the estimated node failure rate.
In contrast, we consider a broader range of keep-alive algo-
rithms. Our aim is to compare and contrast a variety of al-
gorithms that differ in the amount and type of information
shared and the amount of keep-alive state maintained.

There are several works which present failure detectors
based on the sharing of positive information only. In [22],
the authors present a gossip-style failure detection service,
where nodes gossip to learn about the liveness of other nodes.
Nodes timeout routing table entries that are not refreshed for
a while. Gupta et al. [8] presents a failure detector in which
a node, A, sends a ping to a random other node, B, at the
start of each protocol period (O(seconds)). If an ack is not
received within some timeout, then A sends a ping request to
c other random nodes. If one of the c nodes receives an ack
from B and forwards the ack to A successfully before the
protocol period ends, then A will not conclude B to be down.
The effect of sending a ping request to c random nodes is a
decrease in the probability of false positive. However, send-
ing c more probes in the baseline algorithm achieves a simi-
lar reduction in the probability of false positive. In addition,
these failure detectors are designed to detect node failures,
but not network failures. For example, if B is up, but there is
a path outage between A and B, then A will not detect this
failure if some other node C can communicate with B and
forwards this information to A. In contrast, node A will still
be able to remove B based on losses of its own probes in the
keep-alive algorithms we considered.

In [6], [7], Gupta et al. propose one-hop and two-hop
lookup schemes in which they use a hierarchy to disseminate
membership changes. The bandwidth requirement on lead-
ers in the hierarchy is in the Mbps range depending on the
number of nodes in the system. The promptness in detecting

www.manaraa.com

12

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Hours from Start of Trace

P
ro

ba
bi

lit
y

of
 F

al
se

 P
os

iti
ve

baseline
SN
SNP
SN+BPTR
SNP+BPTR

(a)

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7

200

400

600

800

1000

1200

Hours from Start of Trace

B
an

dw
id

th
 C

on
su

m
ed

 (
B

yt
es

/s
ec

on
d/

no
de

)

baseline
SN
SNP
SN+BPTR
SNP+BPTR

(b)

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7

2

4

6

8

10

12

14

Hours from Start of Trace

Lo
ok

up
 L

os
s

R
at

e
(%

)

baseline
SN
SNP
SN+BTR
SNP+BTR

(c)

Fig. 10. (a) Probability of false positive; (b) control overhead; (c) packet loss rate for d = 128 and mean lifetime of 22 minutes.

a node failure is limited by the interval at which messages
are exchanged between the leaders (usually tens of seconds).
We believe that the sharing algorithms with backpointer state
may provide a viable alternative for disseminating node fail-
ures in such networks for faster detection time and lower
probability of false positive.

VII. Conclusion
In this paper we study the performance of a variety of keep-
alive algorithms that differ in the amount of information
shared, the type of information exchanged, and the amount of
keep-alive state maintained. We develop analytical models,
simulation, and implementation to study the performance of
these algorithms using the metrics of detection time, proba-
bility of false positive, control overhead, and packet loss rate.
Our results indicate that in the absence of network failures,
the maintenance of backpointer state achieves both lower de-
tection time and control overhead than baseline, with compa-
rable probability of false positive. In the presence of network
failures, algorithms that share information improves detec-
tion time at the cost of increased control overhead. If the
application-specific cost of slower failure detection is high,
then the increased control overhead may be warranted. The
improvement in detection time between baseline and sharing
algorithms becomes more pronounced as the size of neighbor
set increases. This suggests that it is especially beneficial to
incorporate sharing information as a building block in keep-
alive algorithms for overlay networks which maintain a large
number of neighbors. Finally, sharing of information allows a
network to tolerate a higher churn rate than the baseline algo-
rithm. We believe that these findings will provide important
insights on designing failure detection algorithms.

References
[1] D. Anderson and et al. Resilient overlay networks. In Proc.

SOSP 2001.
[2] Y. Chu, S. G. Rao, and H. Zhang. A case for end system

multicast. In Proc. SIGMETRICS 2000.
[3] M. Dahlin and et al. End-to-end wan service availability.

IEEE/ACM ToN, Apr. 2003.
[4] R. A. Durrett. Probability: Theory and Examples. Duxbury

Press, 1995.

[5] K. Gummadi and et al. The impact of dht routing geometry
on resilience and proximity. In Proc. ACM SIGCOMM, 2003.

[6] A. Gupta. Two hop lookups for large scale peer-to-peer over-
lays. In Proc. IRIS Student Workshop 2003.

[7] A. Gupta and et al. One hop lookups for peer-to-peer over-
lays. In Proc. HotOS 2003.

[8] I. Gupta and et al. On scalable and efficient distributed failure
detectors. In Proc. PODC 2001.

[9] K. Hildrum and et. al. Distributed object location in a dy-
namic network. In Proc. SPAA 2002.

[10] G. Iannaccone and et al. Analysis of link failures in an ip
backbone. In Proc. IMC 2002.

[11] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analy-
sis of the evolution of peer-to-peer systems. In Proc. PODC
2002.

[12] D. Loguinov and et al. Graph-Theoretic Analysis of Struc-
tured Peer-to-Peer Systems: Routing Distances and Fault Re-
silience. In Proc. SIGCOMM 2003.

[13] R. Mahajan, M. Castro, and A. Rowstron. Controlling the
Cost of Reliability in P2P Overlays. In Proc. IPTPS 2003.

[14] S. Ratnasamy and et. al. A scalable content-addressable net-
work. In Proc. SIGCOMM 2001.

[15] Y. Rekhter and T. Li. A border gateway protocol 4 (BGP-4),
Mar. 1995. Internet RFC 1771.

[16] S. Rhea and et al. Handling churn in a dht. In Proc. USENIX
2004.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Proc. Middleware 2001.

[18] S. Saroiu, K. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proc. MMCN
2002.

[19] I. Stoica and et al. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proc. SIGCOMM 2001.

[20] I. Stoica and et al. Internet Indirection Infrastructure. In Proc.
SIGCOMM 2002.

[21] A. Vahdat and et al. Scalability and accuracy in a large-scale
network emulator. In Proc. OSDI 2002.

[22] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-based
failure detection service. In Middleware 1998.

[23] M. Yajnik and et al. Measurement and modelling of the tem-
poral dependence in packet loss. In Proc. INFOCOM 1999.

[24] S. Zhuang and et al. On failure detection algorithms in over-
lay networks. Technical Report UCB/CSD-03-1285, Com-
puter Science Division, U. C. Berkeley, Oct. 2003.

